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Review

Introduction to Fourier Transform Infrared Spectroscopy and
Applications in the Pharmaceutical Sciences

Robert J. Markovich! and Charles Pidgeon'-

The applications of infrared spectroscopy to pharmaceutical sciences is small compared to the appli-
cations of infrared spectroscopy to the fields of chemistry, biology, and biochemistry. This is unfor-
tunate because modern routine infrared spectrometers are excellent research tools that provide very
high signal-to-noise, high resolution, and extensive data-manipulation computer software packages.
This review summarizes basic principles of infrared spectrometers and the use of Fourier self-

deconvolution.
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INTRODUCTION

Infrared spectra of pharmaceutical systems frequently
contain overlapping infrared (IR) bands that are instrumen-
tally unresolvable. Overlapping IR bands are a particularly
common problem in the infrared spectra of condensed phase
samples because the widths of individual absorption bands
are usually greater than the separation between neighboring
bands. Unfortunately, increasing the instrumental resolution
does not resolve overlapping bands, and consequently math-
ematical methods are needed to resolve complex band con-
tours into their individual components. The mathematical
techniques currently used to overcome spectral band over-
lap include curve-fitting (1), derivative spectroscopy (2), and
Fourier deconvolution (3-10). Of these techniques, Fourier
deconvolution provides the most information on band struc-
ture, especially when the individual component bandwidths
are similar. Although Fourier deconvolution is a powerful
technique common to infrared spectroscopy, a functional
understanding of deconvolution theory must precede its use
because artifacts such as water vapor band intensities (2,5)
and background noise (4,8,9) are enhanced by Fourier de-
convolution and these artifacts may be mistaken for real
spectral features. Thus, understanding spectral deconvolu-
tion allows the user to make the correct choice of both the
spectrometer parameters used to collect the IR data and
the deconvolution parameters needed to resolve complex
IR band contours into their individual components
(2,3,5,6,9,10). With the correct choice of both the spectral
and the deconvolution parameters, optimum resolution en-
hancement occurs.

Applications of infrared spectroscopy to the pharma-
ceutical sciences are rapidly expanding and these applica-
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tions are briefly reviewed after describing how Fourier trans-
form infrared spectrometers collect and process data.

FOURIER TRANSFORM INFRARED SPECTROMETERS

Interferometers

Experimentally, Fourier transform infrared (FTIR)
spectrometers measure interferograms with an optical de-
vice known as an interferometer, which is based upon the
Michelson interferometer shown in Fig. 1 (11-14). This in-
terferometer consists of two plane mirrors at right angles to
each other and a beam splitter at a 45° angle to the mirrors.
One mirror is fixed, while the other is movable. For mid-IR
spectroscopy, the beam splitter is composed of a very thin
film of germanium supported on a transmitting KBr sub-
strate. The beam splitter divides the incoming light from the
source into each arm of the interferometer, ideally reflecting
50% of the light to the moving mirror and transmitting 50% of
the light to the fixed mirror. Thus as shown in Fig. 1, the
input beam of light is equally divided into two optical paths
of the interferometer; one arm of the interferometer has a
fixed optical path length, while the other arm of the interfer-
ometer has a variable optical path length created by the mov-
able mirror. However, the two reflected beams recombine at
the beam splitter, and during this second pass through the
beam splitter approximately half the beam returns to the
source and the other half passes through the sample where
the nonabsorbed light continues on to the detector. The op-
tical path difference caused by the movable mirror results in
a phase difference when the reflected light beams are recom-
bined; this produces a time-dependent optical interference
pattern at the detector. This optical interference pattern, en-
coding the spectral information about the sample, is called
an interferogram. Thus, the major function of the interfer-
ometer is to divide the light from the IR source into two
optical paths (one with a fixed optical path length and one
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Fig. 1. Essential components of a Michelson interferometer. During
an infrared scan, the interferometer sequentially (i) divides light
emitted from the IR source in two beams using a beam splitter, (ii)
changes the optical path of one beam using a movable mirror, (iii)
recombines the two beams to create optical interference, and (iv)
passes the IR light through the sample for measurement of a single-
beam spectrum. The ratio of the single-beam spectra with and with-
out the sample in the light path yields a sample spectrum in percent-
age transmittance. As shown, the moving mirror cycles back and
forth during an FTIR scan. The optical path difference for any mir-
ror displacement x is calculated by the equation |2(OM — OF)| and
is denoted optical retardation &.

with a variable optical path length) and then recombine the
two beams of light to create an optical interference pattern
denoted as an interferogram. Interferograms are plots of the
light intensity 1(3) from the IR source reaching the detector
versus the optical retardation & caused by the displacement
of the mirror. The maximum light intensity reaching the de-
tector is referred to as throughput and, in part, determines
the instrument sensitivity.

Detectors

Both the detector and the IR crystal surface control the
lower limit of the IR spectral window during data collection.
Two types of detectors are used in modern infrared spec-
trometers: a deuterated triglycine suifate (TGS) pyroelectric
bolometer, which is the least expensive and supplied with
the purchase of most spectrometers, and a more sensitive
liquid nitrogen-cooled mercury cadmium telluride (MCT)
photodetector. MCT detectors are preferred for IR measure-
ments of condensed phase samples, particularly liquid
phase, because MCT detectors are more sensitive than TGS
detectors. Three different MCT detectors are available and
each detector is defined by its lower limit wavenumber cut-
off, v, oq- The narrow-range MCT detector has a V.
~800 cm ™!, the medium-range MCT detector has a V.
~650 cm ™!, and the wide-range MCT detector has a v ¢
~500 cm ~ !. Although the sensitivity of these MCT detectors
varies with ., the narrow-range MCT detector elicits the
highest sensitivity (10 times the sensitivity of the TGS de-
tector) and the wide-range MCT detector has an intermedi-
ate sensitivity (three to four times the sensitivity of the TGS
detector) (11,15).

The IR light intensity (or optical throughput) of the in-
terference pattern reaching the detector is quantitated at in-
tervals of mirror displacement, x, that are less than a mi-
crometer. This opticial throughput is quantitated at equal

Markovich and Pidgeon

intervals of mirror displacement and therefore the interfero-
gram sample spacing is fixed. FTIR spectrometers have a
helium-neon (He-Ne) laser to measure the linear displace-
ment of the movable mirror so that the computer can quan-
titate the optical throughput at exact mirror displacements in
the form of digitized data. Consequently the He—Ne laser is
sometimes referred to as the IR spectrometers’ clock that
tells the computer when to obtain a data point for the inter-
ferogram being measured. The He—Ne laser emits light with
a wavelength of 0.63299 p. (compared to the wavelengths 2.5
through 25 p defining the mid IR region) and the position of
the moving mirror can be accurately evaluated at one-half of
the laser wavelength but usually one wavelength is used as
the spacing interval. Sophisticated (and expensive) FTIR
spectrometers allow the user to define the sample spacing,
but for most mid-IR work this is unnecessary.

Interferograms

Understanding how interferograms encode spectral in-
formation is conveniently described by first considering a
monochromatic laser-light source entering a Michelson in-
terferometer. When laser light enters an interferometer, only
a single wavelength of light can exit the interferometer.
However, at the detector, the laser light appears to alternate
from light to dark at increments of mirror movement x, pro-
ducing a maximum signal at mirror positions eliciting maxi-
mum constructive interference and a minimum signal at mir-
ror positions eliciting maximum destructive interference. At
mirror positions between the maximum constructive inter-
ference and the maximum destructive interference, optical
interference causes the input laser light to appear at some
intermediate intensity. Although the incident laser-light in-
tensity is constant, the interferometer transformed the high-
frequency IR beam into a modulated beam of varying inten-
sity as the moving mirror travels through one cycle. Thus the
output of the interferometer is merely a beam of light, oscil-
lating in intensity. A plot of this oscillating beam intensity
I(x) versus mirror movement x [or, equivalently, I(3) versus
optical retardation 8] is shown in Fig. 2A. We note that the
output of an interferometer actually contains both an AC and
a DC component. The DC component is omitted for clarity

mirror displacement x (cm)

I(x)

. 0
mirror displacement x (cm)

Fig. 2. Output from a Michelson interferometer as a function of
mirror displacement x. The interferograms I(x) are for a monochro-
matic IR source (A} and a polychromatic IR source (B). Both inter-
ferograms are even functions, I(—x) = I(x).
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because the spectral information is encoded in the AC com-
ponent.

Figure 2A shows that the interferogram of a laser-light
source is a pure cosine wave with a constant amplitude. This
can be explained by considering the detector signal at dis-
crete mirror positions. The optical path difference between
the light beams which recombine at the beam splitter is cal-
culated by the equation [2(OM — OF)| and is referred to as
optical retardation . Starting from the point where the fixed
and moving mirrors have a zero path difference ZPD (i.c.,
OM = OF as shown in Fig. 1), the two beams interfere
constructively and the detector observes a maximum signal
intensity. As shown in Fig. 2, this mirror position is at the
center of the interferogram. If the movable mirror is dis-
placed a distance 1/4 A\ away from this ZPD, the optical
retardation is now 1/2 . The laser beams in each arm of the
interferometer are exactly 180° out of phase, and upon re-
combination at the beam splitter, destructive interference
causes a minimum detector response. A further displace-
ment of 1/4 A makes the total optical retardation A, and the
two beams are once more in phase and the condition of
constructive interference exists. Therefore for a monochro-
matic IR beam, there is no way to determine whether the
signal maximum corresponds to ZPD or some integral num-
ber of \.

Actually modern FTIR spectrometers do not stop the
mirror at individual positions of mirror displacement as de-
scribed above; rather the mirror moves at a constant velocity
during a scan. Consequently the signal intensity I(3) oscil-
lates during each 1/2 X of optical retardation 3. In theory, the
interferogram of a monochromatic source is a simple cosine
function described by (11)

I(3) = 0.5 I(v) cos(qu ;) (1a)

= 0.5 I(v) cos(2mvd) (1b)
where I(v) is the IR source intensity, & is the optical path
difference [2(OM — OF)|, A is the wavelength of light, and
I/A = v. The factor 0.5 in Eq. (1) results from a physical
limitation of the interferometer; due to the position of the
optical components in the interferometer, only 50% of the
reflected light that recombines at the beam splitter travels
toward the detector, whereas 50% returns toward the
source. Even for this trivial case using a monochromatic IR
source, the experimentally recorded interferogram is actu-
ally a function of several instrument variables which include
the intensity of the light source, beam-splitter efficiency,
detector response, and amplifier characteristics (11). Be-
cause each of these instrument variables affects the optical
throughput of /(v) measured at the detector, Eq. (1) must be
rewritten as

I(3) = B(v) cos(2wvd) )

where B(V) is the intensity from the IR light source emitted at
a specific wavenumber v as modified by the instrument (11).
The optical retardation ¢ seconds after ZPD is given by

8 =2Vt (3)

where V is the velocity of the movable mirror in centimeters
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per second (11). During a scan, the product V¢ {in Eq. (3)] is
the distance of mirror movement x (i.e., x = Vi), and since
the reflected light from the moving mirror travels twice the
distance that the mirror has moved, the factor 2 in Eq. (3) is
needed. In other words, optical retardation 3 is always twice
the distance of mirror movement (i.e., & = 2x). Substituting
Eq. (3) into the argument of the cosine function in Eq. (2)
gives

I(#) = B(v) cos(2mv 2Vr) )

Equations (2) and (4) are mathematically equivalent. How-
ever, the “‘new’” dependent variable I(r) is the optical
throughput at the detector as a function of the new indepen-
dent variable time t. Equation (4) is a cosine wave and the
amplitude at time ¢ of any cosine wave of frequency fcan be
described by the general equation

A(f) = A, cos2ft) )

where A, is the maximum amplitude of the wave (11). Equa-
tion (4) is identical to Eq. (5), where

A = 1Y) (6a)
Ao = B() (6b)
f=2Vv (6¢)

Thus the interferogram intensity I(x) [or /(t)] resulting from
laser light entering an interferometer, as shown in Fig. 2A, is
a pure cosine wave with a frequency f and maximum ampli-
tude B(v). A real infrared source emits broadband IR radia-
tion, thus each v emitted contributes a pure cosine wave to
the final interferogram and the amplitude of each cosine
wave in the experimentally measured interferogram depends
in part on the intensity of the particular ¥ emitted from the IR
source. In fact, based on Eq. (6¢), each unique v emitted
from any IR source is transformed by the interferometer into
a unique cosine-wave interferogram whose modulation fre-
quency f is dependent on the mirror velocity V.

Equation (6¢) is a mathematical description of the crit-
ical purpose of all interferometers. The critical function of
the interferometer is to convert high-frequency radiation into
low-frequency signals that can be measured. High-frequency
IR light (~10'* Hz) entering the interferometer is modulated
into a strobe-like fringe frequency f. From Eq. (6¢) this
fringe frequency f is unique for each v emitted. The mirror
velocity (typically near 0.16 cm/sec for the mid-IR range) of
rapid-scanning interferometers produce modulated frequen-
cies fin the audio frequency range (11). Detector response is
dependent on f, and therefore the mirror velocity is a user
controlled parameter. In general, the TGS detector response
decreases with increasing mirror velocity (i.c., increasing f);
however, the MCT detector response increases with increas-
ing mirror velocity (i.e., increasing f) (11). Therefore mirror
velocity is set higher for the MCT detector when compared
to the TGS detector.

In practice, typical interferograms rapidly decay as the
mirror moves away from either side of the ZPD as shown in
Fig. 2B. When the fixed and moving mirrors depicted in Fig.
1 are of equal path length (i.c., zero optical retardation), all
wavelengths of infrared light from the source are in phase
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and the interferogram elicits a maximum amplitude and max-
imum constructive interference occurs. Thus at ZPD the
maximum optical throughput occurs for both polychromatic
and monochromatic IR sources and maximum amplitude is
expected. However as the mirror travels away from ZPD,
individual v cosine waves are increasingly out of phase with
one another. This results in greater destructive interference
between the v cosine waves and this causes the interfero-
gram to decay rapidly. Experimentally, there is usually a
small optical phase shift near ZPD, and consequently most
measured interferograms are asymmetric in this region (14).

Equation (2) [or Eq. (4)] is a general function that de-
scribes interferograms for specific wavelengths of light, and
consequently when multiple v enter an interferometer, the
measured interferogram is described by the use of Eq. (2) [or
Eq. (4)] for each v emitted. In other words, Eq. (2) applied to
each v emitted is summed to give the interferogram of a
broadband IR source (i.e., the superposition principle ap-
plies to the optical waves contributing to the interferogram).
Consider mathematically describing one data point in the
actual interferogram produced by a broadband IR source
(e.g., Fig. 2B) at a fixed mirror position x = L (the maximum
optical retardation). In order to describe numerically the in-
tensity of light reaching the detector at the mirror displace-
ment equal to L cm [i.e., I(L)], Eq. (3) must be summed over
all v emitted by the source and averaged over all wave-
lengths of light sampled (11,15),

k
KL) = D, B®); cos(2mvL)
i=0

9

We emphasize that the movable mirror is fixed in this hypo-
thetical example, and only one data point is being mathe-
matically described in the total interferogram. In Eq. (7), L is
constant and v; and B(v), are the ith wavelength and intensity
of this wavelength being measured at the detector. To de-
scribe completely the interferogram produced by a typical IR
source during a complete scan, one merely uses Eq. (7) for
each mirror position associated with data acquisition. In
other words, instead of calculating /(L) at the maximum mir-
ror displacement L (which is a constant), experimental in-
terferograms require I(x) for all possible mirror positions x
(which is a variable). Data acquisition occurs at multiple
discrete mirror positions, and for each mirror position, Eq.
(7) can be used to calculate I(x). Thus the general form of Eq.
(7), for any particular mirror position associated with data
acquisition, is

k
I(x) = 2 B(®); cos(2mv;x)

i=0

@®)

or, in integral form (11,15),

I(x) = j :Ow B(v) cos(2nvx)dv ©)

where the limits of integration reflect an infinite spectrum.

Unfortunately I(x) is experimentally measured and the
integral given in Eq. (9) is merely a mathematical description
of what is actually measured. In fact because I(x) is experi-
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mentally measured, the desired spectral information B(v) is
mathematically obtained from this measured interferogram
using the cosine Fourier transform of Eq. (9), which is

B®) = j:: I(x) cos(2mvx)dx (10)

where the limits are for infinite mirror displacement.

Finite Mirror Displacement

Consider again a monochromatic light source emitting a
single IR wavelength B(v). Only one computer calculation
using Eq. (10) would be required to describe B(v) (i.e., the
entire spectrum). However, it is not possible to calculate
B®) from Eq. (10) because the integration limits require in-
finite mirror displacement. It is impossible to move the mir-
ror infinite distances, and consequently Eq. (10) must be
rewritten
I(x)Dy(x) cos[2mvx]dx

BG) = j:‘” (11)

where D,(x) has the value of 1 during the scan, |x| < |L|, and
the value of zero after the scan, jx| > |L|, where L defines the
maximum mirror displacement. In other words, before inte-
gration, the function ‘‘I(x) cos[2wvx]"" in the above integral is
multiplied by 0 at distances corresponding to |x| > |L|. This
allows the integral to maintain the limits that approach in-
finity to satisfy the Fourier transform requirement, and the
D(x) function accounts for the physical limitation of finite
mirror movement. Since the interferogram I(x) is measured
with finite mirror movement x = *L cm, the resulting IR
spectrum will have a finite resolution of 1/L cm ™.

The key concept in Eq. (11) is that multiplication of each
measured interferogram data point I(x) by D, (x) occurs be-
fore integration, i.e., before calculating B(v) intensities.
D(x) is denoted as an apodization function. We emphasize
that D(x) is a function that can depend on the value of x and
that D,(x) need not have the value either 1 or 0 as described
above, and in fact, D,(x) is usually a continuous function of
x. Any one of approximately eight apodization functions are
routinely used in infrared spectroscopy during data acquisi-
tion. For condensed phase spectra the choice of apodization
function usually does not significantly influence the final
band shape because the natural IR bandwidth is much
greater than the bandwidth associated with the apodization
function. However, for deconvolution of condensed phase
spectra, the deconvolved IR spectrum can be severely dis-
torted if the appropriate apodization function is not used.
Thus apodization functions are used during the calculation of
IR spectra from the experimentally measured interfero-
grams, and apodization functions are used during the decon-
volution of IR spectral lines.

The distortion of IR spectral lineshapes caused by
apodization functions is best illustrated using the interfero-
gram produced by a monochromatic light source, i.e., the
cosine interferogram in Fig. 3A. The triangular apodization
function described by the equation D(x) = 1 — x/L is shown
in Fig. 3B. The triangular apodization function is a triangle
with its apex located at x = 0 and the base ranging from —L
c¢m to L cm. The multiplication of D,(x) with I(x) results in a
triangular-shaped interferogram I(x)D,(x) shown in Fig. 3C.
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Fig. 3. An apodization function D,(x) changes the interferogram
profile and the lineshape of the corresponding spectrum. The inter-
ferogram I(x) of a monochromatic light source (A) and the triangular
apodization function D,(x) shape (B) are muitiplied together, result-
ing in an interferogram (C) described by I(x) Dy(x). The Fourier
transformation of this interferogram results in a spectral lineshape
(D) described by the apodization function lineshape F| [D,(x)]. The %
S value equals the intensity of the first side lobe divided by the peak
intensity multiplied by 100.

Thus multiplying the monochromatic light-source interfero-
gram I(x) by an apodization function D,(x) causes the profile
of the interferogram to resemble the shape of the apodization
function. In this example, Fourier transformation of the tri-
angularly apodized monochromatic interferogram (Fig. 3C)
using Eq. (11) results in an IR lineshape described by the
equation F[Dy(x)] = Lsinc*(wvL) shown in Fig. 3D. In other
words, for this very narrow input frequency, a monochro-
matic light source, the IR spectrum has bands with the line-
shape dominated by the Fourier transformation of the
apodization function D,(x). When the instrumental resolu-
tionis 4cm ™! (i.e., L = 0.25 cm), the IR linewidth in Fig. 3D
(calculated as Av = 0.886/L for this apodization function) is
approximately 3 ¢cm™'. Thus a monochromatic IR light
source is always measured with a bandwidth approximately
equal to the instrumental resolution regardless of the
apodization function. Apodization functions differ signifi-
cantly regarding side-lobe intensity and Fig. 3D shows that
the triangular apodization function has only positive side
lobes. Other apodization functions, e.g., boxcar and trape-
zoidal, have large negative side lobes. The bandshapes and
side-lobe intensities of several apodization functions are
given in Refs. 4, 8, and 11.

The IR Spectrum

Equation (11) emphasizes that B(v) is the amplitude of a
particular v calculated by a computer using all data points in
the experimentally measured interferogram. From Eq. (11) it
is clear that IR spectral information is encoded in the inter-
ferogram I(x) but integration over all values of x is required
even for a single v. Typically IR sources emit polychromatic
light and each wavelength of light emitted has a different
intensity. A plot of this polychromatic IR source versus v is
called a single-beam (SB) spectrum. Thus in order to obtain
the single-beam spectrum from a polychromatic source emit-
ting v between 4000 and 400 cm ! (the midinfrared region),
the same integration process described by Eq. (11) is per-
formed for each v emitted. Evaluating Eq. (11) from v =
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4000 to v = 400 cm ! requires Eq. (11) to be rewritten as a
double integral. Thus for a polychromatic IR source the SB
spectrum is calculated from

SB = f 74000 f T H0)Dylx) cosQRuvx)dv dx  (12)

=400 x=-

Equation (12) merely calculates the intensity of light B(v),
given by Eq. (11), for each v from 4000 to 400 cm ! for all
mirror displacements x = —L ¢cm to x = L cm. When a
sample is placed in the optical path the single-beam spectrum
decreases in intensity at IR wavelengths absorbed by the
sample. The percentage of transmitted IR light through the
sample, % T(v), is thus calculated from the single-beam spec-
tra obtained with and without the sample in the optical path
of the spectrometer

SBsample

% T@) = X 100 (13)

SBbackground
where SB,, .. is the single-beam spectrum obtained with
the sample in the light path and SBy,, . 0una is the single-
beam spectrum without the sample in the light path. The
absorbance spectrum A(V) is calculated from % T(v) by

A(w) = —log[% T(v)/100] (14)

In FTIR spectroscopy, plotting data in absorbance units
*“A(v),” in contrast to percentage transmittance ‘% T(v),” is
preferred because data manipulation such as spectral sub-
traction is possible only in the absorbance mode (16,17). The
experimental requirements for obtaining % T(v) and A(v) are
depicted in Figs. 4 and 5.

A few final comments on producing a single-beam spec-
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1880 350

Fig. 4. Obtaining an experimental infrared spectrum of a sample
requires measuring two interferograms: (A) the background inter-
ferogram and (B) the sample interferogram. These interferograms
were Fourier transformed into their corresponding single-beam
spectra shown below each interferogram (C and D) through the use
of Eq. (12). The inset to the background interferogram (A) shows the
spectral information in the wings of the interferogram. The sample
single-beam spectrum is a dilauroylphosphatidylcholine lipid film on
a CaF, plate (19). Sharp water vapor and carbon dioxide bands are
apparent in both single-beam spectra.
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Fig. 5. Transmission spectrum (A) and corresponding absorbance
spectrum (B) obtained from the single-beam spectra in Fig. 4. The
sample spectrum is a dilauroylphosphatidyicholine lipid film on a
CaF, plate (19). The percentage transmittance % T(¥) is calculated
using Eq. (13), which takes the ratio of the single-beam spectra of a
broadband source measured with (Fig. 4D) and without (Fig. 4C) the
sample present. The absorbance spectrum A(v) is subsequently cal-
culated from the % T(v) spectrum using Eq. (14).

trum by calculating each B(¥) using the numerical form of
equation (11) are needed. Interferograms, in theory, are
symmetrical on both sides of ZPD and therefore it is conve-
nient to expand Eq. (11),

B() = J:j’w 1(x) Dy(x) cos[2mvx]dx

+ J X_=0°° I(x)Dg(x) cos[2mx]dx (15)

Based on the integral limits, these integrals merely calculate
the area on each side of ZPD. This is graphically shown in
Fig. 2 for both interferograms. The area on each side of ZPD
(i.e., x = 0) are equal because the cosine functions in the
above integrals are even functions, that is, I(—x) = I(x).
Because the integrals are equal, Eq. (15) can be rewritten as

B@) =2 J " 10Dy cos[2moxldx (16)

where the integral limits are now the mirror displacement x
for a single-sided scan. Based on Eq. (16), a single-sided
scan (mirror movement from 0 to L cm) generates a single-
sided interferogram, whereas a double-sided scan (mirror
movement from —L to +L cm) generates a double-sided
interferogram, but both interferograms provide the same
spectral information. Data collection for both double-sided
interferograms and single-sided interferograms occurs as the
mirror moves away from the beam splitter. Thus as the mov-
able mirror travels in the forward direction, data collection
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occurs (see Fig. 1). For a fixed number of scans, double-
sided interferograms provide better signal-to-noise ratios
than single-sided scans because the spectral information is
sampled twice (once on each side of ZPD). However, ob-
taining spectra from single-sided interferograms allows a
greater number of scans per second, which is useful for gas
phase experiments that require rapid data acquisition (e.g.,
GC/FTIR) (11,18). Single-sided interferograms begin data
collection just to the left of ZPD to allow for phase correc-
tion (11).

Instrument Resolution and Spectral Noise
The instrumental resolution, 8,, of IR bands depends

solely on the maximum distance of mirror movement L,

¥ = an

-

where 3, is the instrumental resolution in cm™'. As L in-
creases the optical retardation increases [Eq. (3)] and the
resolution at which the IR data are obtained increases [Eq.
(17)]. Unfortunately, as L increases, the amount of spectral
noise increases. Spectral noise increases because during a
complete scan, electronic and instrument noise remains con-
stant, whereas the signal decays or decreases (Fig. 4A);
therefore the S/N of the interferogram decreases as the mir-
ror is displaced further from the ZPD. Equation (10) dem-
onstrated that every I(x) value in the interferogram is used to
calculate each B(¥) in the single beam spectrum. Thus as L
increases, i.e., S/N decreases, more interferogram noise
causes all IR frequencies to have increased spectral noise.
Measured interferograms decay rapidly with increasing mir-
ror movement beyond ZPD, but at some finite mirror posi-
tion, little (or no) IR signal exists and the detector is record-
ing only noise. If the detector is recording mostly noise be-
cause the optical retardation is too high, the instrument
resolution should be decreased to acquire the data. In other
words, the S/N depends on the instrument resolution, and
when the maximum mirror displacement causes the spectral
signal intensity to be equal to or less than the instrumental-
noise intensity, IR data should not be measured.

It is important to avoid high-resolution IR scans when
the actual condensed phase spectra exhibit naturally wide IR
bands. High resolution requires the movable mirror to travel
excessive distances to obtain sufficient optical retardations
for the high resolution. Measurement of condensed phase
spectra at high resolution increases noise in the spectrum as
described above, and this limits the ability to deconvolve IR
spectral lines. For condensed phase spectra, it is rarely nec-
essary to measure spectra at resolution greater than 2 cm ™!,
and typically 4-cm ™! resolution is acceptable. To determine
the optimum resolution for a particular condensed phase
sample, one merely obtains IR spectra at low, intermediate,
and high resolution to determine when the spectral noise is
apparent in the broad IR bands. Alternatively, obtaining one
high-resolution interferogram can yield all the information
needed to identify the desired resolution. Prior to Fourier
transformation to obtain the SB spectrum, the high-
resolution interferogram is merely truncated at mirror posi-
tions corresponding to lower instrument resolution. In other
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words, the interferogram is measured with a constant
amount (in fact an excessive number of) data points, but the
number of transform points, used to obtain the SB spectrum,
is reduced to obtain a low-resolution spectrum. Thus one
high-resolution interferogram can be Fourier transformed
several times at sequentially lower resolutions by truncating
the measured interferogram prior to Fourier transformation.
Obviously the high-resolution interferogram would have to
be stored as a separate computer file for this experiment.

CONVOLUTION THEORY

Resolution of unresolved IR bands requires deconvolu-
tion. Before applying deconvolution to IR spectra, it is crit-
ical to understand the inverse process of deconvolution,
which is convolution. As briefly described under Finite Mir-
ror Displacement, the experimentally observed IR band-
shape A(v) is the convolution of the apodization function and
intrinsic or natural IR bandshape. Convolution (denoted
by *) of the intrinsic IR lineshape with the instrumental line-
shape is given by

AW) = Eyv) * Wo() (18)

where the instrumental lineshape Wy(v) is actually the
apodization function D,(x) and the intrinsic lineshape Ey(v) is
produced by molecular vibrations. Thus all observed IR
bands are actually the convolution of two functions, and
consequently all experimentally measured IR bands are
broader and less intense relative to the true IR band. Inher-
ent to the convolution process of two functions are de-
creased peak intensity and increased peak width.

A simple example demonstrates that convolution is
merely a matrix multiplication of one function sliding
through another function (Fig. 6) (6,20). In this example an
idealized IR band with a triangular lineshape E,(v), peak
height of 3 ordinate units, half-bandwidth of 3 units, and
band area of 9 units is used. The instrumental lineshape
W,(v) is a boxcar apodization function with a half-bandwidth
of 1 unit and a height of 2 units. The boxcar function is
initially centered at the —4 abscissa position, where the
leading edge of the boxcar function coincides with the be-
ginning of the triangular band. The convolution process can
be visualized to occur by unit abscissal steps of the boxcar as
shown on the right in Fig. 6. The convolution matrix multi-
plication is achieved by multiplying the intensity of each
boxcar element (i.e., 2) with the intensity of each triangular
band element (i.e., the numbers in bold parentheses) at each
unit abscissal position and this value is given in parentheses
in the matrix table above the boxcar element intensity. For
each boxcar position, X is the A(V) convolved band intensity
prior to normalization for band areas. Convolution does not
change band areas, and therefore these summed values must
be normalized to produce a convolved band with a band area
equal to the original triangular band. The normalized ordi-
nate values of the convolved band A(v) are listed in the col-
umn labeled 3/N. The normalization factor 9/54 was ob-
tained by dividing the band area before matrix multiplication
by the band area after matrix multiplication. It is evident
from Fig. 6 that the convolved band A(v) exhibits a band-
width greater than Ey(v) (2 units) and the peak height inten-
sity is 0.7 units less than E,(v). Although not obvious from
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DN normalized intensity by the factor 9/54 (see text)
Fig. 6. Graphical illustration that demonstrates convolution is the
matrix multiplication of one function sliding through another. In this
case the convolution of a triangular-shaped IR band Ey(¥) with box-
car apodization function W(¥) to form the observed IR band A®@) is
depicted. The convolved band A(v) has a decreased band intensity,
an increased bandwidth, and an equivalent band area relative to
Ey®) (6,20).

the graph, the total area under A(v) remains the same as
Ey() in Fig. 6.

The intention of Fig. 6 was to demonstrate both the
process of convolution and the difference between measured
and intrinsic bandshapes. When measuring an IR band, the
intrinsic IR line shape is not measured, but rather an instru-
mentally observed IR band shape is measured. For describ-
ing the process of convolution in the frequency domain, we
used a boxcar apodization function, but other apodization
functions could have been used. However, triangular IR
bands do not exist and the convolved boxcar-IR band in Fig.
6 (upper right) is unrealistic. In practice the intrinsic IR line-
shape E(v) of condensed phase spectra is best described as
a combination of both Lorentzian and Gaussian lineshapes at
the ratio of 90:10 (6). However, Ey(v) is usually simplified to
only a Lorentzian function as shown in Fig. 7 (2,3,5,6). A
single IR band exhibiting a Lorentzian lineshape can be de-
scribed by Eq. (19) (2,3,5,6)

1

v v,

Fig. 7. The Lorentzian lineshape is the simplified band profile of
condensed phase infrared spectra.
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A(F) = Apeak{'yz/['yz + (F - i0)2]}

where A(v) is the absorbance at wavenumber v, A, is the
maximum absorbance of the band centered at v, and v is the
half-width at half-height (HWHH) of the band. For con-
densed phase spectra, the instrumental resolution is gener-
ally much higher than the spectral resolution . In other
words, when 8, < v, the contribution of the instrumental
lineshape W (V) to the observed lineshape A(v) can fre-
quently be neglected unless the IR bands are subjected to
Fourier self-deconvolution. Fourier deconvolution can re-
duce the observed IR bandwidth(s) enough to cause the de-
convolved bandwidth(s) to be determined by the Fourier
transformation of the instrumental lineshape function or
F[D (x)].

19

THEORY OF FOURIER DECONVOLUTION

IR bands from condensed phase samples are typically
broad and convolved with an instrumental lineshape func-
tion that further broadens the IR bands. Frequently, IR in-
struments cannot resolve these broad overlapping bands. In-
creasing the instrumental resolution will merely result in
more data points in the IR bands that remain unresolved, and
this is the meaning of instrumentally unresolved IR bands.
Fourier deconvolution can be used to resolve (at least in
part) the overlapping IR bands by both reducing the ob-
served IR bandwidth and increasing the IR peak height with-
out changing the peak position. These deconvolved IR bands
facilitate identifying the actual number of IR bands, and the
IR band peak positions.

The process of obtaining experimental IR spectra is pic-
torially summarized in Fig. 8. The experimentally measured
interferograms for both the sample and the background are
shown. Fourier transformation of these interferograms by
Eq. (12) gives a single-beam spectra for each interferogram.
The function I(x) and its transform SB exist in two different
domains; I(x) exists in the distance domain (units of cm), and
SB exists in the frequency or wavenumber domain (units of
cm ™ Y). Figure 8 demonstrates that in the frequency domain,
two single-beam spectra were divided to obtain the percent-
age transmittance spectrum, which is converted to an absor-
bance A(¥) spectrum by Eq. (14). For Fourier transform
pairs, the convolution theorem states (21) that

(i) convolution of two functions means multiplication
of their transforms and

(ii) deconvolution of two functions means division of
their transforms.

In other words, multiplication of two functions in one do-
main is convolution of those functions in the other domain.
Similarly, the division of two functions in one domain is
equivalent to deconvolution of those functions in the other
domain. I(x) and SB are Fourier transform pairs. In order to
obtain the absorbance spectrum A(V) in Fig. 8, the sample
and background single-beam spectra were divided in the fre-
quency domain. This division resulted in the removal of the
background information in the experimentally measured
spectrum. Fourier transformation of this absorbance spec-
trum A(v) gives a single-sided artificial interferogram I'(x) as
shown in Fig. 8. The term artificial in artificial interferogram
merely emphasizes that this interferogram is calculated from
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Fig. 8. A schematic demonstrating how experimental IR spectra are
obtained. Double-sided interferograms /(x) are measured with and
without the sample in the light path, producing the sample (top) and
background (bottom) interferograms, respectively. These interfero-
grams are Fourier transformed F[I(x)] to give the corresponding
single-beam spectra of the sample SB,n,,. and the background
SBy.ckground- Division of the single-beam spectra SBampie/
SByackerouna Tesults in a sample spectrum in percentage transmit-
tance 7T(v) and converting to an absorbance spectrum A(v) by taking
the —logT(v). The absorbance spectrum A(v) can be Fourier trans-
formed F~{A(¥)} to an artificial-interferogram I'(x) which is a cal-
culated single-sided interferogram that does not contain background
spectral information.

a Fourier transformation, and not measured. However, we
emphasize that this single-sided artificial interferogram 7'(x)
is much different than either the sample or the background
double-sided interferograms because of the division of the
single-beam spectra in the frequency domain. Because the
background information was removed by division in the fre-
quency domain A(v), the background information was de-
convolved in the distance domain I'(x). In other words, since
background information is absent from the IR absorbance
spectra, then background information is absent from the ar-
tificial interferogram.

Conversion of the measured IR spectrum into an artifi-
cial interferogram shown in Fig. 8 is somewhat misleading.
Fourier transformation of an entire absorbance spectrum
from 4000 to 400 cm ™! would require excessive computer
time and computer space. Usually, narrow spectral regions,
50-100 cm ™! wide, have molecular vibrations from similar
functional groups, and consequently similar IR bandwidths
are expected in narrow regions of the spectrum. Typically
only a part of the spectrum is used for deconvolution (5).
Consider a narrow region of an IR spectrum A(V) from v, to
v, cm ™! that contains a single IR band described by a
Lorentzian lineshape exhibiting the A,y at ¥,. The inverse
Fourier transform of this IR region denoted by F~'[A®¥)]
calculates an artificial interferogram 7'(x),

I'(x) = F'[A(v)] = 0.5 yAp .k €xp(—2myx) cos2mvgx)D,(x)
(20)

I'(x) is composed of four terms: 0.5¥A .., which is propor-
tional to the band area; cos(2wvyx), which contains the IR
frequency ¥,; exp(—2aryx), which controls the exponential
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decay of the artificial interferogram; and the apodization
function D,(x), used to truncate the artificial interferogram at
x > L cm (2,3,5,6). In Eq. (20), exp(—2myx) contains the
constant vy, which controls the exponential rate of decay of
the artificial interferogram. In other words, v in the fre-
quency domain determines the exponential decay in the dis-
tance domain of I'(x). The rate of decay of I'(x), shown in
Fig. 9, can be reduced by dividing the artificial interferogram
by a function exp(—+v'x), where v’ < v.

exp(—2myx)

I'(x) = 0.5 yApeak pe— cosuign)Dg(x)  (21)

Thus when the artificial interferogram shown in Fig. 9 is
divided by exp(—+'x), this has the effect of reducing the
exponential decay of the interferogram as shown in Fig. 10.
Figures 9 and 10 are plotted on the same scale and thus the
decreased rate of decay of I'(x) is apparent in Fig. 10. Since
division of functions in one domain results in deconvolution
in the other domain, dividing the artificial interferogram
[i.e., Eq. (20)] by exp(—v'x) in the distance domain results in
deconvolution of the spectrum in the frequency domain. The
exponential terms in Eq. (21) can be combined,

I'(x) = 0.5 yA o expl —2mw(y — v')x] €0s2mvgx) D, (x)
(22)

which shows that the exponential decay of I'(x) is deter-
mined by y — v'. Since vy — v’ is less than v, then I'(x)
decays more slowly and the new half-bandwidth in the IR
spectrumisy — y'. Thus the key term in Eq. (22) is (v — v'),
which controls in part the final half-bandwidth in the IR
spectral region of interest, along with the apodization func-
tion Dy(x). The deconvolved spectrum A'(v) is obtained by
performing the Fourier transform operation F[I'(x)],

A'(®W) = FII')] (23)
which results in the deconvolved spectrum from ¥; to 7,
cm™! as shown in Fig. 10.

In summary, Fourier deconvolution of an IR spectral
region (illustrated in Figs. 9 and 10) is accomplished by (i)
generating an artificial interferogram I'(x) that describes the
spectrum A(v), in the region of interest ¥, to ¥, cm ™', using
the inverse Fourier transform operation F~![A(D)]; (ii)
smoothing the artificial interferogram with an apodization
function D, (x) (Fig. 9); (iii) dividing the artificial interfero-

FHa@)}
A‘*’
= - —
A 3, v, o L S

Fig. 9. An artificial interferogram is generated from a narrow region
of the IR spectrum, from ¥, to ¥, cm~'. This example shows a
Lorentzian-shaped band which also has the contribution of an
apodization lineshape function FD(x)], where D,(x) is used to trun-
cate the artificial interferogram at L cm. A(v) and I'(x) are Fourier
transform pairs where the artificial interferogram I'(x) is calculated
from the spectrum A(v) by the inverse Fourier transform operation
F~'[A(W)] using the equation above I'(x).
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Fig. 10. The artificial interferogram shown in Fig. 9 is weighted by
1/exp( —v'x) to reduce the rate of decay. The resulting Fourier trans-
formation to the frequency domain by the operation F[I'(x)] results
in a deconvolved spectrum A’(v). This deconvolved spectrum is
described by a half-bandwidth (y — v’), which is smaller than the
original half-bandwidth vy and a peak height A’ .., which is a factor
v¥/(y — v') higher than the original peak height A

peak*

gram by an exponential weighting function exp(—v’x); and
(iv) Fourier transformation F[I'(x)], which gives the decon-
volved spectrum A'(v) containing an infrared band(s) with a
decreased bandwidth (Fig. 10). As shown in Eq. (22) the
HWHH of the deconvolved band is v — v'.

COMPLETE VS PARTIAL DECONVOLUTION

Acceptable deconvolved IR bands may be either par-
tially or completely deconvolved. Complete deconvolution
means completely removing the intrinsic or natural lineshape
from the measured IR band; consequently the apodization
lineshape determines the IR band contour and all spectral
information about the IR “‘lineshape’’ is lost. Complete or
maximum spectral deconvolution occurs when v = v’ be-
cause the term exp[ —2w(y — v')x] in Eq. (22) equals 1, and
the weighted artificial interferogram is a pure/infinite cosine
wave shown in Fig. 3A. Apodization of a pure cosine wave
with D, (x) caused the lineshape to be dominated by F| [D.(x)]
in the frequency domain (Fig. 3D). This is more clearly il-
lustrated by substituting v = v’ into Eq. (22), which gives

I'(x) = 0.5 YA ey COSQuTH)D,(x) 4)

The deconvolved spectra is obtained by performing the Fou-
rier transformation of Eq. (24). Using a triangular apodiza-
tion function [Dy(x) = 1 — x/L], the Fourier transformation
of Eq. (24) is

A'®) = A'pen L sincXn(v — 5p))L} 5)

where the Lsinc? term is from the Fourier transformation of
the triangular apodization function.

Complete deconvolution is illustrated using an idealized
spectrum A(v) with a Lorentzian bandshape (Fig. 11A). The
inverse Fourier transform operation F~'[A(7)] is performed
producing the artificial interferogram I'(x) which contains
the spectral information in the region of interest (Fig. 11B).
This calculated artificial interferogram is multiplied (con-
volved) with a triangular apodization function D,(x) and di-
vided (deconvolved) with a function exp[ — v'|x|] which com-
pletely removes the exponential decay attributed to the
Lorentzian IR lineshape function. This results in an artificial
interferogram whose profile is determined by only the
apodization function (Fig. 11C). The deconvolved spectrum
A'(v) is generated by the Fourier transform operation F[/ "(x)]
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Fig. 11. Examples of complete and pamal spectral deconvolution.
The IR spectrum (A) is Fourier transformed to give I'(x) as shown in
B. I'(x) is then divided by a weighting function exp[y’[x]] to remove
completely the natural linewidth (C) or remove partially the natural
linewidth (E) from the interferogram. Fourier transformation of the
interferograms produces infrared spectrum that are completely (D)
or partially (F) deconvolved. Prior to deconvolution, the observed
bandwidth is -y, and after deconvolution the bandwidth equals vy —
v’ for partial deconvolution. For complete deconvolution the ob-

served bandwidth equals 0.886/L when using the apodization func-
tion shown; other apodization functions will change this calculation.

)]

4Y,, = 0.8861L

(Fig. 11D). After deconvolution, the band intensity (A’ ..)
has increased because the band area remains unchanged by
deconvolution. Also note the appearance of side lobes in the
deconvolved spectrum, which is indicative of an IR line-
shape dominated by the apodization function.

Side lobes in deconvolved spectra limit the interpreta-
tion of IR spectra. Consequently it is more common to par-
tially deconvolve spectral lines to avoid side lobes in the
final spectrum. For partial deconvolution, the weighting
function 1/exp(—v'x) is utilized under the condition vy > '
and this is also illustrated in Fig. 11. Note that during partial
deconvolution, division of I’(x) by exp(—vy'x) caused the ar-
tificial interferogram to maintain the appearance of exponen-
tial decay (Fig. 11E), and also note that the final spectrum
does not contain side lobes (Fig. 11F). For partial deconvo-
lution, the deconvolved IR band A'(¥) in Fig. 11F is given
by (9)

Yy = ¥ + @ = $)l} (26)

Al(i) = A’peak{'y -

Examples of Fourier Deconvolution

Most deconvolution programs require the input of four
deconvolution parameters by the operator. These include
the spectral region ¥, to ¥, cm ™', the apodization function
D(x), yo for the narrowest IR band of interest, and the res-
olutlon enhancement factor K. However, some deconvolu-
tion programs may also require an estimation of the line-
shape composition in percentage Gaussian and Lorentzian
(6). The resolution enhancement factor X is given by (5)
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Y A A peak

('Y -y ) Apeak @7

which demonstrates that the deconvolved peak height,
A’ cax> has increased relative to the measured peak absor-
bance, A_.., by a factor of K.

In practice the instrument resolution should be less than
or equal to the deconvolved band full-width at half-height or
substantial bandshape distortion occurs (9). For example,
consider when the instrumental resolution 8, equals the de-
convolved IR bandwidth

8 = 2ty — ¥ (28)
Rearranging this equation gives
(v —¥) = 82 29
Substituting Eq. (29) into Eq. (27),
K =~y = ') = v/(8,/2) (30)

where the maximum expected resolution enhancement fac-
tor K is now a function of the experimental resolution 3,
cm ! and the observed HWHH « for the band of interest.
For example, if a spectrum measured at 4-cm ™" resolution
(i.e., 8, = 4 cm™ ') contained overlapping bands with a
HWHH of 10 cm ~ ! (the band had a full width of 20 cm ™! at
half-peak maximum), the maximum resolution enhancement
factor K according to Eq. (30) is 5; that is,

K = v/(d3y2) = 10/(42) = 31)

In practice, the use of large K values is usually not possible
because deconvolution enhances noise in the measured
spectrum. Consequently deconvolution of experimental
spectra commonly use K values <5 and usually K values
range between 1.5 and 2.5.

The first step in deconvolution is to determine 3,, (S/
N)y, and v of the measured spectrum. The S/N is determined
by dividing the peak intensity in the region of interest by the
peak-to-peak background noise. The baseline spectral region
is used to monitor the noise level in the deconvolved spectra.
It may be difficult to estimate y because of overlapping
bands, however, the correct estimation of v is important for
acceptable band deconvolution.

Figure 13A shows the IR spectrum of a dilauroylphos-
phatidylcholine lipid suspension obtained at 4-cm ™! resolu-
tion (3, = 4) by coadding 512 scans (22). The C-H stretching
region (3000 to 2800 cm ') contains several overlapped
bands due to the CH, asymmetric and symmetric stretching
bands (v,, CH, and v, CH,) and CH, asymmetric and sym-
metric stretching bands (v,; CH; and v, CH,). After subtrac-
tion of the aqueous solvent (16,17,22), the lipid bilayer spec-
trum shows v,, CH, (2920 cm ') with a peak intensity of
0.1606 (Signal S) absorbance unit and a peak-to-peak noise
intensity of 0.0003 (Noise N) absorbance unit (in the region
near 3050 cm ~!). The signal-to-noise ratio (S/N), of the mea-
sured spectrum is

(S/N)y = = 535 (32)

0 0003

The extent to which deconvolution decreases S/N in the de-
convolved spectrum {denoted (S/N)'] depends on both the
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Fig. 12. Fourier deconvolution of the C-H stretching region of di-
lauroylphosphatidylcholine bilayers with a 10 cm ! HWHH Lorent-
zian line. This spectrum was recorded with a Nicolet 20 SXC spec-
trometer using the cylindrical internal reflectance micro CIRCLE
cell (Spectra-tech, Inc., Stamford, CT) accessory (22). The bilayers
were formed by hydrating the lipid film with D,0 (22). Spectra for
both D,0 and diC,,PC/D,0 were obtained at 4 cm ! resolution by
coadding 512 interferograms (22). Subtraction of the D,O solvent
spectrum resulted in a difference spectrum of the diC,PC bilayers
with a S/N = 535 (16,17,22). (A) Experimental spectrum with an
instrument resolution of 4 cm ™! and a signal-to-noise ratio S/N of
about 535. (B) Deconvolved spectrum with a Bessel apodization
functiony = 10cm™'anda K = 2.0.

resolution enhancement factor K and the apodization func-
tion. A general rule in deconvolution is that for each factor of
two by which v, is decreased (or the IR peak intensity is
increased), (S/N)’ is reduced by a factor of about 10 (4,8,9).
Therefore, during deconvolution, the appropriate choice of
K should satisfy the condition (4,8)

K < log(S/N) (33)

The v, CH, band at 2850 cm ! is narrower than v,, CH, and
thus the best estimate of the v, is determined from the v,
CH, band. At one-half the peak intensity, v equals 10 cm ~ .
The ratio /3, equals

vy 10
—=—=2.725 (34)
Sg 4

A

B

c

3100 3029 23958 2887 2816 2745
WAVENUMBER

Fig. 13. Illustration of the effect of change in half-bandwidth values,
v, during deconvolution of IR spectra. The measured spectrum of
dilauroylphosphatidylcholine bilayers from Fig. 12A was decon-
volved with a Bessel apodization function and K = 2 using the
following half-bandwidths: (A) y = Scm™!; (B)y = 10 cm ™~ !; and
©C)y=15cm™ .
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Fig. 14. Comparison of the effect of apodization function on the
signal-to-noise ratio of deconvolved spectra. The measured IR spec-
trum of dilauroylphosphatidylcholine (diC,,PC) bilayers from Fig.
12A had (S/N), = 535. The self-deconvolved spectra with K = 2.7
and a HWHH of 10 cm ™! show significant differences in (S/N)’
depending on the D(x) used: (A) triangular/sinc; (B) triangular
squared; (C) Bessel; (D) cosine; (E) Gaussian; and (F) sinc squared.

3100 3029

The maximum X is 2.7 calculated from Eq. (33). Thus a K
value of 2.0 is a good first approximation. Using a Bessel
apodization function, K = 2, and y = 10 cm ™!, the decon-
volved IR spectrum of dilauroylphosphatidylcholine bilayers
is shown in Fig. 12B.

In practice, y used for deconvolution is estimated from
the measured IR spectrum. Usually visual inspection of the
measured IR spectrum leads to poor approximations of vy,
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Fig. 15. An example whereby spectral information can be obtained
only through the use of Fourier deconvolution. Deconvolution of
C =0 stretching region of the sn-1 and sn-2 carbonyl esters of com-
pletely hydrated dilauroylphosphatidylcholine (diC,,PC) bilayers
(22) (A) and **anhydrous” diC,,PC lipid film (19) (B). The original
spectrum is of hydrated diC,,PC bilayers as described in the legend
to Fig. 12A. Deconvolution parameters for the hydrated lipid bilayer
spectrum used a Bessel apodization function K = 2 and HWHH =
19 cm ™. Deconvolution parameters for the “‘anhydrous’’ lipid film
spectrum used a Bessel apodization function K = 2.75 and HWHH

=19cm .
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TABLE 1. Applications of Fourier Transform Infrared Spectroscopy in the Pharmaceutical Sciences®

Objective Technique Sample(s) References
Direct analysis of powdered Diffuse reflectance Prazepam, meprobamate, glutethimide, 25-27
drugs from tablets and (DRIFT) methocarbamol, aspirin, methyprylon,
capsules caffeine mebutamate, carisoprodol,
ethinamate, quaalude, valium, cocaine
HCI, phencyclidine base,
methamphetamine HCI, caffeine
Quantitation of lipid in Transmission/CaF, film Phospholipids, cholesterol 19,28
membrane systems
Characterization and Infrared microscope Phospholipids and fatty acids covalently 28-30
quantitation of reflectance mode bonded to silica
silica-immobilized lipids
Conformational analysis and Attenuated total reflectance Phospholipids 22-24,28.31
thermotropic behavior of (ATR)/aqueous suspension
membrane lipids
Conformational analysis of ATR/aqueous systems Membrane proteins, soluble proteins, 6,32-34
peptides and proteins peptide hormones, enzymes
Skin permeability enhancement ATR and transmission Stratum corneum, rn-alkanols, oleic acid 35-37

@ Literature surveys for infrared spectroscopy covering the period of 1982 to the end of 1989 can be found in the following: Anal. Chem.,
1986, 58:1906-1925; Anal. Chem., 1990, 62:223R-255R; J. Mol. Struc., 1985, 132:1-476; J. Mol. Struct. 1986, 155:1-402; J. Mol. Struct.
1987, 171:1-359; J. Mol. Struct., 1988, 191:1-342; J. Mol. Struct., 1989, 215:1-386.

which results in overdeconvolution (i.e., the half-bandwidth
is overestimated and side lobes appear in the spectrum) or
underdeconvolution (i.e., the half-bandwidth is underesti-
mated and the deconvolved spectrum is smoothed). The op-
timum <y for deconvolution can be determined from several
deconvolutions where v is varied while both K and D,(x) are
held constant (Fig. 13). Figure 13A clearly shows that the de-
convolved spectrum using vy = 5 cm ™' is heavily smoothed
(i.e., underestimation of y); the peaks maintain a high degree
of Lorentzian character and there is decreased resolution com-
pared to the measured IR spectrum. The deconvolved spec-
trum shown in Fig. 13C using y = 15 cm™ ! reveals negative
side lobes in the region of the . CH, band (near 2850 cm ™ "),
which indicates overestimation of the half-bandwidth value.
Side lobes make spectral interpretation difficult and should
be avoided when deconvolving IR spectral lines.

In addition to HWHH and K, an apodization function
used for smoothing the deconvolved spectrum is chosen dur-
ing the Fourier deconvolution of IR spectra. In contrast to
the actual measurement of condensed phase spectra, where
the particular apodization function does not significantly af-
fect the final spectrum, the particular apodization function
used for deconvolution greatly affects the signal-to-noise in
the deconvolved spectrum. The dependence of (S/N)’ on
D,(x)is illustrated in Fig. 14 for the C-H stretching region of
diC,,PC bilayers. Using K = 2.7 and the six different
apodization functions that are included with the Nicolet
DECON deconvolution program, these deconvolved spectra
show significant differences in (S/N)’ depending on the par-
ticular D,(x) used. The noise is no longer random, and peaks
and valleys in the deconvolved spectrum are periodic, with a
period of 1/L cm ™ '. At this high X value it is evident that the
Bessel function (Fig. 14C) and the cosine function (Fig. 14D)
provide the highest (S/N) relative to the other apodization
functions.

Fourier deconvolution has its greatest utility when spec-
tral information can be obtained only through the use of this
resolution enhancement technique. This is illustrated by the
C = O stretching bands in the region of 1750-1700 cm ! for
the interfacial carbonyl esters of completely hydrated di-
lauroylphosphatidylcholine (diC,,PC) bilayer (22) (Fig. 15A)
and an ‘‘anhydrous’’ diC,,PC lipid film (19) (Fig. 15B). The
hydrated lipid bilayer spectrum shows a broad band with a
peak position at 1731 cm ™!, whereas the lipid film has a
narrower band with a peak position shifted to a higher wave-
number, 1738 cm ™ '. The difference in the v C=0 band po-
sitions are from (i) different conformations in the carbonyl
ester groups due to a rotation about the C,-C, bond of the
glycerobackbone (23,24) and (ii) the fact that the carbonyl
ester linked to the sn-2 glycerocarbon atom is hydrogen
bonded to water, whereas the carbonyl ester linked to the
sn-1 glycerocarbon atom is not (24). The sn-1 ¥ C=0 band
typically occurs near 1741 cm ™!, whereas the sn-2 v C=0
band position depends on the extent of phospholipid hydra-
tion. When phospholipids are completely dehydrated, the
sn-2 v C=0 band is near 1736 cm ™! (24), whereas for hy-
drated phospholipids it is near 1725 cm ~ ! (23,24). In Fig. 15,
the deconvolved spectrum above each measured spectrum
demonstrates that the broad carbonyl ester band is com-
posed of two broad bands centered at 1740 and 1725 cm ™1,
which correspond to the sn-1 C=0 and the sn-2 C=0
stretch, respectively. For aqueous suspensions of lipo-
somes, the sn-2 carbonyl ester is completely hydrated as
indicated by the high intensity of the 1725-cm ™! sn-17C=0
band. In contrast, ‘“‘anhydrous’’ lipid films (containing sev-
eral molecules of hydration water) have a low-intensity
shoulder at 1725 cm ™!, indicating that sn-2 C = O groups are
dehydrated (Fig. 15). Several other applications of infrared
spectroscopy applied to pharmaceutical problems are sum-
marized in Table I.
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